Software, services, and expertise for the business of shipbuilding.

        • Achieve a Quick ROI
        • Sliced implementations and our expertise means a benefit from day one, without a lengthy setup.

        • Integrate, Collaborate, Re-use
        • SSI’s Open Shipbuilding Platform gives you a future-proof source of truth for your shipbuilding projects.

        • Change Management
        • Get visibility into changes, understand the impacts, and have the right information at the right time to execute the change.

        • Adapt and Innovate
        • Create a local or virtualized shipbuilding environment for your global distributed workforce.

        • Changing from Another Solution
        • SSI makes it easy to switch from other platforms and keep your existing data.

        • Design
        • The most significant opportunities to impact the cost of building and operating a ship are found in the design and engineering phase.

          Initial Design  |  Basic Design  |  Detailed Design

        • Build
        • Even a smaller shipbuilding project is immense in scope and scale. Manage the challenges that are unique to ship construction.

          Prepare  |  Fabricate  |  Assemble

        • Maintain
        • With the majority of a ship’s life taking place after it’s been built, it’s crucial to ensure that the organization has a clear picture of the vessel at all times.

          Digital Twin  |  Repair / Refit  |  Operations

        • Nexus
        • SSI Nexus is a community for users, creators, & implementers of SSI software.

        • SSI Certified Training
        • SSI Certified Training allows SSI users to access detailed training exercises, materials, courses, and certifications.

        • SSI Blogs
        • The SSI blogs are your place to get insights from our CEO into the intersection of shipbuilding and technology, see how shipbuilding is moving forward, and keep up with SSI news.

          Lighthouse Waveform  |  Shipbuilding Solutions

        • ShipConstructor
        • A complete line of solutions for the design, engineering, and construction of ships and offshore projects.

        • EnterprisePlatform
        • Tools to connect and share data across every system in the shipyard and make information available.

        • ShipbuildingPLM
        • The only truly shipbuilding-specific product lifecycle management (PLM) platform.

        • Company
        • Learn more about SSI and our leadership.

        • Locations & Contact
        • You need a partner with a global presence.

        • News
        • The latest on SSI and shipbuilding.

        • Events
        • Join us at our next event, conference, or trade show.

July 31, 2018
SSI LearningSSI NewsTraining

It is interesting to note how and why certain design decision were made regarding their design of the pedal-powered single person submarine named Chinook. The following is adapted from a report from the UVic Submarine Racing Club:

This is the second post of the series about SSI’s cooperation with the UVic Submarine Racing Club. Previous post: “More Engineers Needed: SSI Responds” Next Post: “SSI Schools Student Submarine Racers


Hull Design

Picture of the hull of the submarine designed in ShipConstructor

A key decision was made regarding the material: the hull was made of fiberglass instead of carbon fiber because the weight of the submarine is fixed based on displacement, i.e. any weight saved from using carbon fiber would just translate to less foam used to achieve neutral buoyancy.

For safety, the hull seam was on a horizontal plane rather than vertical so that the entire forward section could double as an escape hatch. Mounting points for internal structure were placed on the hull to allow components to be easily removed. Finally, to save money on transportation to the competition in England, the hull was split into 4 sections so that it could fit into luggage on an over-sized piece of luggage on a plane. Clever.


Propulsion System Design

Sub Design Propulsion System

As noted, the propulsion of the sub would be pedal powered. In order to accommodate a wide variety of potential drivers, the club used an adjustable shoulder brace so that they could choose the driver with the best overall performance during testing, rather than the smallest person who could fit.

The aluminum support system was made so that it could be tested outside the sub and the gearbox was also designed to be optimized during testing based on efficiency calculations and power requirements.

Also, to help overall efficiency, the design implemented a Kort nozzle propulsion system that eliminated the vortexes forming at the tip of the blades and redirected the flow of fluid to a concentrated direction. This allowed a rudder to be implemented after the propeller blades.

Kort Nozzle Rendering

Steering Control System

Steering and Control Unit Forward

Since the rudder was placed behind the propeller blade, it allowed the sub to attain a higher “turning moment” due to lifting forces of the rudder being farther away from the center of gravity. Steering was also improved due to the Kort Nozzle because it produced a more uniform mass flow to the rudder. Spaded design diving planes were chosen to reduce drag forces.

But besides all these technical details, you might be wondering how the sub is actually steered and controlled. The answer is that it is controlled by with a handlebar attached by cables to the rudder and dive planes. The drive steers with a side to side motion. With a rotating throttling motion on the handle bar (like a motorcycle), the driver controls the dive planes.


Stability-Buoyancy System

Divers in the pool with sub testing stability

The sub has air diaphragms throughout its length. PVC foam pockets create positive buoyancy and are counterweights to create a low center of gravity. Interestingly, the team implemented a buoyancy compensating device (BCD) because they learned that it is common during the race for submarines to lose weight as air is released from the air tanks. A BCD was designed to ensure level race completion by accounting for the change in mass.


Safety Release System

Submarine Safety Release

Finally, since safety could not be overlooked, as per the competition rules, the sub has a high visibility surface maker buoy which can be released by the pilot to signal if help is required. If things are really serious, using a “dead man’s switch” in the form of a clutch, the safety buoy is released automatically if the pilot is incapacitated and unable to squeeze the clutch handle.


Summary

As you can see, despite never having been part of this competition, the UVic team put a lot of thought into the design of their submarine Chinook. SSI is happy to have been a part of this project.

Don't Miss These Shipbuilding Strategies

Subscribe to the Shipbuilding Solutions blog and get actionable strategies and best practices from industry experts.

We don’t spam! Read our privacy policy for more info.

Leave a Reply

Your email address will not be published. Required fields are marked *

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

The reCAPTCHA verification period has expired. Please reload the page.